A proof of the linearity conjecture for k-blocking sets in PG(n, p3), p prime

نویسندگان

  • Michel Lavrauw
  • Leo Storme
  • Geertrui Van de Voorde
چکیده

In this paper, we show that a small minimal k-blocking set in PG(n, q), q = p, h ≥ 1, p prime, p ≥ 7, intersecting every (n−k)-space in 1 (mod q) points, is linear. As a corollary, this result shows that all small minimal k-blocking sets in PG(n, p), p prime, p ≥ 7, are Fp-linear, proving the linearity conjecture (see [7]) in the case PG(n, p), p prime, p ≥ 7.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A proof of the linearity conjecture for k-blocking sets in PG(n, p), p prime

In this paper, we show that a small minimal k-blocking set in PG(n, q), q = p, h ≥ 1, p prime, p ≥ 7, intersecting every (n−k)-space in 1 (mod q) points, is linear. As a corollary, this result shows that all small minimal k-blocking sets in PG(n, p), p prime, p ≥ 7, are Fp-linear, proving the linearity conjecture (see [7]) in the case PG(n, p), p prime, p ≥ 7.

متن کامل

On the Linearity of Higher-Dimensional Blocking Sets

A small minimal k-blocking set B in PG(n, q), q = pt, p prime, is a set of less than 3(qk + 1)/2 points in PG(n, q), such that every (n − k)-dimensional space contains at least one point of B and such that no proper subset of B satisfies this property. The linearity conjecture states that all small minimal k-blocking sets in PG(n, q) are linear over a subfield Fpe of Fq. Apart from a few cases,...

متن کامل

A small minimal blocking set in PG(n, pt), spanning a (t-1)-space, is linear

In this paper, we show that a small minimal blocking set with exponent e in PG(n, pt), p prime, spanning a (t/e − 1)-dimensional space, is an Fpe-linear set, provided that p > 5(t/e)− 11. As a corollary, we get that all small minimal blocking sets in PG(n, pt), p prime, p > 5t−11, spanning a (t−1)-dimensional space, are Fp-linear, hence confirming the linearity conjecture for blocking sets in t...

متن کامل

On the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture

The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...

متن کامل

Linear Point Sets and Rédei Type k-blocking Sets in PG(n, q)

In this paper, k-blocking sets in PG(n, q), being of Rédei type, are investigated. A standard method to construct Rédei type k-blocking sets in PG(n, q) is to construct a cone having as base a Rédei type k′-blocking set in a subspace of PG(n, q). But also other Rédei type k-blocking sets in PG(n, q), which are not cones, exist. We give in this article a condition on the parameters of a Rédei ty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2011